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1 Summary  
The Internet is trying to evolve from a best-effort network that moves data files to a sophisticated 
infrastructure that delivers value-added services such as video conferencing, virtual reality 
games, and distributed simulation. However, providing such services in a scalable fashion turns 
out to be very challenging. Today’s solution is to deploy vertically-integrated services, i.e. the 
service provider decides on the required service functionality and develops a tightly integrated 
system that delivers the service to users. This approach has many disadvantages: services are 
hard to modify and extend, it does not easily allow code reuse, and it is difficult to exploit new 
network features or to meet unique requirements of specific customers.  
 
As an alternative to vertically-integrated services, Libra supports the development of new 
services through composition of existing, primitive services. For example, a distance learning 
service could build on existing video conferencing and content distribution services. This 
approach is more flexible since it allows services to be modified and extended by replacing some 
components. It also automatically supports code reuse and it allows advanced network features to 
be used by developing components that are optimized to exploit the new technologies. However, 
this approach comes with its own set of challenges. First, how should we manage the diverse 
resources that are needed to support the computational and communication requirements of the 
service components. Second, how can we meet user specific requirements given that components 
only offer generic service functionality.  
 
We address the resource management problem by having components use resource management 
mechanisms that match their functionality. Specifically, Libra uses two classes of components. 
The first class consists of low-level communication services that are generic and are shared by 
many high level services. As a result, scalability is a key concern. Such services will in general 
rely on distributed self-organization to optimize resource use and communication performance. 
We explore self organization in the context of three example communication services: the 
Narada End-System Multicast services, and the Mercury and Camel publish-subscribe systems. 
Our results show that self-organization is an attractive way of managing this class of 
components, assuming the system adapts to resource availability and can be extended to meet 
user-specific requirements.  
 
A second class of services provides more specialized computational and storage functionality. 
For such services, support for user-specific optimizations is more important. This suggests the 
use of a centralized approach to service composition and resource allocation. We developed the 
service synthesizer to support this class of services. It creates optimized service instances based 
on an understanding of the user requirements and the conditions in the network. We developed a 
number of video gateway and transcoding components to evaluate the use of service synthesis. 
We believe a synthesizer-based approach is promising although our experience suggests that it is 
again important that the synthesizer can adapt to resource availability and user requirements.  
 
Both the service synthesizer and self-organizing service components need runtime support help 
in resource management and service deployment. Examples of support functions are network 
measurements that help in the placement of service components and connectivity support that 
helps services deal with the presence of NATs and firewalls. The Libra project developed the 
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Global Network Positioning (GNP) service for measuring network latencies, the Packet Train 
Rate (PTR) algorithm for estimating available bandwidth, and Address Virtualization Enabling 
Service (AVES) tool for providing universal connectivity.  
 
The Libra project relies heavily on active networking technology to meet its goals. Active 
networking is used in two crucial ways. First, we need the ability to deploy service components 
in the network as needed. New service instances may for example need to be deployed to satisfy 
increased load. More importantly, new instances of service components often need to be placed 
“close” to the user to meet end-to-end latency or bandwidth requirements. Second, we use active 
networking technology to customize generic service components so they better support the needs 
of higher level services or end-users. The idea is that base service functions as an execution 
environment that can host active applications that implement user or domain-specific 
functionality, e.g. prioritization of traffic or matching operations in publish-subscribe systems. 
Customization is especially important for generic low-level services.  

2 Introduction  
The Internet is continuing to grow at a very rapid pace, both in terms of the number of users and 
network throughput. At the same time, it is trying to evolve from a best-effort network that 
moves data files to a sophisticated infrastructure that delivers value-added services such as video 
conferencing, virtual reality games, and distributed simulation. These two concurrent trends are 
creating significant challenges in both the infrastructure and electronic services areas. A first 
question is how to develop a network infrastructure that is not only highly scalable, but that at 
the same time has sufficient functionalities such as QoS and multicast to support the envisioned 
services. For electronic services, the main challenge is complexity: value-added services are 
large distributed programs that have to execute in an unpredictable runtime environment (the 
Internet), raising questions such as how to meet end-to-end service properties.  
 
To deal with these challenges, providers currently deploy vertically-integrated services, i.e. the 
service provider decides on the required service functionality and develops a tightly integrated 
system that delivers the service to users. In many cases the service is based on a client-server 
architecture, since it is easy to set up and manage. For example, a “video conferencing service” 
would be set up as a set of servers running a server application that includes all the service 
functionality: video multicasting, transcoding, stream thinning, and translating between session 
standards (e.g. SIP [27] and H.323 [33]). While there are some exceptions to this design (most 
notably the Web and peer-to-peer services such as Gnutella), they tend to be fairly specialized 
infrastructures that focus on a specific task (e.g. file sharing) and their design does not generalize 
to other services.  
 
Such a vertically-integrated service model has a number of disadvantages. First of all, it is not 
very flexible. For example, adding new functionality to satisfy a new user will require a non-
trivial extension of the integrated service code, or the creation of specialized versions of the 
service for that user. Secondly, reusability or interoperability are difficult since the service is 
developed as a stand alone system. As a result, it is typically not possible to use the service as a 
component of a richer value-added service, and service providers often have to “reinvent the 
wheel” instead of reusing existing service functionality. Third, it is difficult to use advanced 
network features such as multicast and Quality of Service (QoS). The reason is that these 
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features are not universally available or come in different forms, and it is difficult for a 
vertically-integrated service to handle such diversity. Being restricted to using the smallest 
common denominator network feature hampers the service provider’s ability to develop 
sophisticated services quickly.  
The Libra

1 
project explored a fundamentally different way of developing and deploying network 

services. Instead of vertically-integrated services, we propose to support the development of new 
services through composition of existing, primitive services. For example, a distance learning 
service could build on existing video conferencing and content distribution services. This 
approach is very flexible since it allows new services to be defined in a variety of ways and 
allows existing services to be modified and extended by replacing some components. Second, it 
automatically supports code reuse. Finally, advanced network features can be used by using 
components that are optimized to exploit specific technologies that may be available in some 
parts of the network.  
 

 
Figure 1:  Entities in the service model 

 
While a component-based approach has many advantages, it has the drawback that the resulting 
services can be very generic since that are based on generic components.  The active networking 
research community has been developing technology that allows the rapid deployment of new 
functionality, such as data processing or control protocols, by dynamically inserting mobile code 
segments into the network.  The Libra project combines active networking technology with a 
component based approach to deliver services that are optimized to meet specific user 
requirements.  Active networking is used in two ways.  First, we need the ability to deploy 
service components in the network as needed; new instances of service components may fore 
example need to be placed “close” to the user to meet end-to-end latency requirements.  Second, 
we use active networking technology to customize generic service components so they better 
support the needs of higher level services or end-users. 
 
The Libra project developed a set of mechanisms and tools to manage a set of rich composable 
network services in a scalable fashion.  These components were developed in the context of a set 
of example services including video conferencing, broadcasting, and distributed games.  In the 
process, we had to address a number of fundamental questions.  For example, should services be 

                                                 
1 The name “Libra” refers to the fact that we try balance rich functionality on one hand and scalability on the other 
hand. 
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managed in centralized, distributed, or in some hybrid fashion?  To what degree can the service 
infrastructure be shared by multiple services or in other words, how much of the services 
infrastructure must be service specific?  Finally, how can we strike a balance between the 
convenience of using generic components versus the benefits of using components that have 
been specialized for specific users. 

3  Methods, Assumptions, and Procedures 
We describe the context in which we expect services to be deployed and the service composition 
process. We also present the research approach used in Libra. 

3.1  The Players 
We assume a network service model in which “providers” fall in two classes (Figure 1).  
Network providers provide the resources necessary to deliver services, i.e. bandwidth on network 
links, computing cycles and memory on network nodes, and possibly specialized devices.  
Service providers (or value-added service providers in [12]) deliver more advanced services such 
as distance learning or backup services to end-users. Such value-added services are built by 
combining a set of service components and by executing them on a set of resources that is leased 
from an network provider. Service components can be implemented internally by the service 
provider or can be provided by other service providers.  
 
This model assumes that network services will be developed and delivered in a competitive 
market. Service providers get paid by its customers (end-users and higher-level service 
providers) for the value-added services they deliver; network providers get revenue from the 
users of their infrastructure (service providers and possibly end-users). As in any competitive 
market, all the providers will want to be able to differentiate their product (resources/services) 
from that of their competitors’, and they will want to bring services to the market faster. Note 
that in practice the distinction between network providers and service providers may not be that 
clear. Service providers may own some communication and computational resources, and 
similarly, network providers may deliver some value-added services.  

3.2 Service Composition Process  
Hierarchically-synthesized services go through three stages in their lifetime. The first phase is 
the design and implementation phase. During this phase, the service provider determines the 
specification of the service and what components and resources may be needed to meet the 
different users’ requirements. Some components may have to be implemented by the service 
provider, and other components/resources will be provided by other service providers and 
network providers. The outcome of this phase is a service recipe describing, for a specific type of 
user requests, what components/resources are needed and how they fit together.  
 
The second phase is the deployment phase. During this phase, the service provider needs to make 
sure that the necessary components and resources will be available at runtime. The service 
provider may decide specifically  what suppliers will be used for the different components / 
resources (note that some may have multiple suppliers), or the service provider can maintain a 
directory of available suppliers for components and resources so that such information can be 
used at execution time for service composition. The service provider can also arrange a provider 
that provides a “service discovery” service to provide such information at execution time.  
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The third phase is the execution phase. During this phase, customers submit requests to the 
service provider, and the synthesizer use the service recipe and information on components and 
resources availability to decide how to best satisfy the requests. One of the advantages of the 
hierarchically-synthesized approach over the vertically-integrated approach is that more 
decisions are made at runtime, allowing the service to be more adaptive and flexible, e.g. adapt 
to network load and address specific customer requirements. The execution phase is the focus of 
the Libra project.  

3.3 Research Approach  
Our approach to tackle the challenges associated with the deployment and execution of 
composable, active services was to develop a set of sample service components that provide a 
context for the development of tools and runtime support. The service components fall in two 
categories. First, we built a small number of high functionality components, e.g. a video gateway 
and transcoders, that can be used to create end user services. Second, we developed a set of 
scalable communication services, e.g. end-system multicast and publish-subscribe services, that 
support different communication paradigms between components.  
 
These components provide a context to explore a number of mechanisms and tools in support of 
the management of large scale composable services:  
 

• Self-organization as a way of managing large scale communication services in a purely 
distributed fashion.  

 
• A service synthesizer that can compose optimized service instances for clients using a 

combination of components.  
 

• Service customization, which is a particular application of active networking, as a means 
of customizing both high functionality and scalable communication components to meet 
the needs of specific services.  

 
• A service runtime infrastructure that provides support for network measurements and for 

universal service access. This infrastructure is shared by self-organizing services and 
service synthesizers.  

 
The project also included a second task on the application of active networking to congestion 
control. This task was headed by Srini Seshan.  

4 Results  
In this section we start with a motivating example and a description of our service architecture. 
We then summarize our results.  

4.1 An Example: Video Conferencing  
Let us use a video conferencing service as an example to illustrate how service composition can 
be used to provide flexible and sophisticated network services more easily than using a 
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vertically-integrated approach. Consider the following scenario (Figure 2): Suppose Alice, who is 
at W University, wants to hold a video conference that includes two participants at W University, 
two participants at X Corporation, two participants at Y Corporation, and one participant at Z 
Airport. The participants at W and X all use the vic/SDR applications, but W and X are not in the 
same IP multicast zone (i.e. participants at W cannot reach participants at X using IP multicast). 
The participants at Y are using the NetMeeting application, and the participant at Z is using a 
receive-only handheld device (which does not do protocol negotiation).  
 
Supporting this scenario is difficult because of the heterogeneity of the systems involved. For 
example, different participants are using different video conferencing tools (NetMeeting [40] 
versus the MBone tools vic [55] and SDR [47]) that use different protocols (H.323 [33] versus 
SIP [27]). Similarly at the network layer, IP multicast is not universally supported, and while 
application-level multicast alternatives exist, they are more difficult to set up. For this reason, 
video conferencing services today typically require users to use specific software. For example, 
the service may set up an H.323 server and will require all participants to use, for example, Net-
Meeting. Alternatively, it may require that all participants use the MBone tools and are 
connected to MBone [39]. Obviously, this solution is not very convenient.  
 
The challenge in supporting this scenario is not that the software does not exist. We developed a 
prototype service that supports the scenario of Figure 2 using the following existing software 
packages: (1) a SIP/H.323-translation gateway [28], which helps vic/SDR and NetMeeting 
applications establish a joint session by translating the protocol negotiations (and also handles  
 
 

 
Figure 2:  A video conferencing scenario 

 
the video demultiplexing for Net Meeting users); (2) End System Multicast (ESM) [16,15] 
proxies, which implement multicast functionality using an overlay over a unicast- only network; 
and (3) a hand held proxy that performs protocol negotiation on behalf of the hand held device 
and forwards the video streams, optionally performing transcoding to reduce bandwidth 
consumption. We also make use of vic/SDR and NetMeeting clients and IP multicast. This video 
conferencing service, using many of the technologies described in the rest of this section, was 
demonstrated at the 2002 DARPA Active Networks Conference and Exposition (DANCE’02) 
meeting, which was held in May 29-30, 2002 in San Francisco. The challenges are instead in 
putting the existing software together: (1) how can we get these separately- developed packages 
to work together to deliver a higher- level service, (2) how can we manage the deployment of the 
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components in the infrastructure so that the video conferencing service can be efficient and of 
high quality (to the user), and (3) how can we automate the service composition process so user 
request can be handled efficiently without manual intervention. In the remainder of this report, 
we will describe how an architecture based on hierarchical composition of active service 
components addresses these issues.  

4.2  Service Deployment Architecture  
The problem of deploying can be broken up in two pieces.  First, how do we provide rich service 
functionality, i.e. how do we manage the service code so we can best meet the diverse 
requirements of end users. Second, how do we manage the server and network resources that 
execute the service code. Developing and deploying software using reusable software 
components is a widely used technique for building large complex software systems. The 
simplest example is the use of libraries in sequential programs while Corba [6] applies this idea 
to the distributed context by organizing software systems as a set of distributed self-contained 
objects. When applying this idea to Internet scalenet work services, hierarchical service 
composition is a very natural solution. Figure 3 shows for example how a distance learning 
application could be composed of more primitive services: each service combines its own 
functionality with that of one or more child services to support its clients (parents). The second 
problem corresponds to the traditional problem of distributed resource management. Services 
need both “point” resources, e.g. CPUs and storage, to execute service components and 
communication resources that connect the point resources with paths with appropriate properties,  
 
 

 
 

Figure 3: Hierarchical service composition example: distance learning 
 
e.g. bandwidth and latency. Centralized solutions have the advantage that they support 
aggressive optimization of both individual service requests and overall resource use, but they do 
not scale. Distributed solutions are much more scalable, but they limit the type of optimizations 
that can be performed. This conflict between scalability and richness of the optimization is 
fundamental and traditional heuristic solutions tend to compromise one or the other property.  
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The hierarchical service composition model offers an attractive way of achieving both scalability 
and rich optimization by using a hybrid resource management solution. The idea is that each 
service component can independently select its resource management strategy. We will use the 
video conferencing service as an example to illustrate the hybrid resource management strategy 
using Libra:  
 

• High-level services will in general be fairly specialized, lending themselves to user-
specific optimizations. This suggests the use of a centralized approach to service 
composition and resource allocation. We developed the service synthesizer to support this 
class of services. It creates optimized service instances based on an understanding of the 
user requirements and the conditions in the network. Active networking technology is 
used to deploy service components on-the-fly in the right part of the network, e.g. 
deploying a video transcoder near the clients.  

• Low-level services will in general, be more generic and will be shared by many high 
level services. As a result, scalability is a key concern. Such services will in general rely 
on distributed self-organization. To explore this service class, we developed a set of 
scalable communication services. Active networking technology is used both to deploy 
the service and to customize its operation.  

 
In the remainder of this section, we summarize our work in the following areas: service 
synthesis, network-sensitive service discovery, scalable multicast and publish-subscribe 
communication services, the service support infrastructure, service customization, and 
congestion control.  
 

 
(a) Abstract solution 

Figure 4: Synthesizer steps for the video conferencing scenario 

4.3 Service synthesis  
The service synthesizer creates optimized service instances for incoming user requests. More 
specifically, it performs the following tasks at runtime: (1) The synthesizer receives the user’s 
service request, which specifies the desired service. For example, for the video conferencing 
service, the user request will specify the conference participants, the conferencing applications 
used by the participants, and so on. (2) The synthesizer generates one or more abstract solutions 
for the user according to the service provider’s service recipe (Figure 4(a)). An abstract solution 
describes one possible combination of components and resources and how they should be put 
together so that the user’s requirements can be satisfied. (3) The synthesizer then needs to 
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“realize” the abstract solutions by finding the actual components in the network, i.e. it “binds” 
each of the abstract components to an actual component in the network (Figure 4(b)). For 
example, if the abstract solution specifies “a video transcoder is needed”, then the synthesizer 
needs to locate a physical machine that is running the transcoding software. An actual 
component can be an existing service owned by the service provider, a service provided by 
another service provider, or a newly instantiated service on an available computation node 
(possibly provided by a network provider). In addition, there will typically be many possible 
realizations of the abstract solutions possible, corresponding to a set of feasible solutions. The 
synthesizer has to use some optimization criteria to pick the “best” binding, considering both the 
service quality for the user and the efficient use of the infrastructure (cost). (4) Finally, the 
synthesizer needs to configure the components to actually start the service instance. How to 
configure the components is specified in the service recipe. For example, in the video 
conferencing service, the synthesizer needs to instruct the transcoding service to establish 
connections to appropriate video source and sink.  
 
We can see that the functionalities needed to perform task (3) are fairly generic, for example, a 
component discovery infrastructure can be shared by many synthesizers. Therefore, in our 
synthesizer architecture, we implement these generic functionalities as libraries that can be used 
by different service providers to implement their synthesizers. As a result, service providers can 
concentrate on developing their service recipes, which specifies how to perform the service-
specific tasks (2) and (4). Note that other similarly observed the benefits of service composition, 
e.g. Panda [45] and Ninja [25]. However, these efforts focused on a path-based service model 
while our approach can be applied to more general multi-point services.  
 
The service recipe can be implemented in a number of ways. One option is realize the service 
recipe as service-specific code. This gives the service provider a lot of flexibility, but can be  
 

Ingredient:  
 

• Handheld proxy: if some participants use receive-only handheld devices, use a handheld proxy for each of 
them.  

• SIP/H.323-translation gateway  
• End system multicast (ESM) service: ask the ESM service to establish an ESM session among the 

vic/SDR endpoints, the gateway, and the handheld proxies. (The ESM service returns the data path entry 
points for those in the ESM session.)  

 
Instruction:  
 

1. Give the gateway the list of NetMeeting endpoints and the list of vic/SDR endpoints and handheld 
proxies (along with their data path entry points) so that the gateway can call the endpoints to establish the 
conference session.  

 
Optimization:  
 

1. Use the generic optimization support  
 

Figure 5: A service recipe for the video conferencing service 
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Ingredient:  
 

• ESM proxy: figure out whether the participants are in the same IP multicast zone, and use an ESM proxy 
for each participant of the ESM session. (All participants in the same IP multicast zone can share the same 
proxy.)  

 
Instruction:  
 

1. For each ESM proxy, choose a multicast address and a port which will be used by the ESM proxy to 
communicate with its associated participant (or participants in the associated zone). This is the data path 
entry point for the participant(s).  
 
2. Set up the ESM session among the proxies.  
 
3. Return the list of data path entry points to the entity that requests for this ESM session.  

 
Optimization:  
 

1. Use the generic optimization support  
 

Figure 6: A service recipe for the end system multicast (ESM) service 
 
complex. An alternative is to use a declarative language; this may simplify the definition of new 
services but may limit flexibility. In either case, the recipe will have to provide three types of 
information: the service components (ingredients) that are used to generate the abstract solutions 
(task 2), a set of instructions to configures the components (task 4), and the optimization 
directives.  
 
To illustrate what a service recipe looks like, Figure 5 sketches (in English) a service recipe for 
the video conferencing service (the actual service recipe is the video conferencing synthesizer 
code). This recipe also illustrates that a component of a service can in fact be a service provided 
by another service provider. In this recipe, the end system multicast (ESM) component is a 
service provided by an ESM service provider. Therefore, the ESM service provider will 
implement an ESM synthesizer using the ESM service recipe in Figure 6, for example.  
 
Of the three parts of the recipe, the optimization section is the least well understood. The reason 
is that the optimization problem is a difficult problem: it involves solving a hard problem (NP-
complete) over a potentially very large number of services and resources. We decided to use a 
heuristic that breaks up the problem in two parts. The first step is to identify for each service 
component a limited number of candidate servers that can provide the required functionality and 
that are likely to have a right network connectivity properties; this step is performed by the 
network-sensitive service discovery (NSSD) service, which is described in the next section. The 
second step takes the candidates identified for each component by NSSD and the optimization 
criteria provided by the service provider and solves a global optimization problem. Algorithm of 
choice depends on the problem size: for small requests, exhaustive search works best, while large 
problems can be solved using commercial packages such as Cplex [32].  
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4.4 Network-Sensitive Service Discovery (NSSD) 
We consider the problem of network-sensitive service selection (NSSS): finding services that 
match a particular set of functional and network properties. Current solutions handle this 
problem using a two-step process. First, a user obtains a list of candidates through service 
discovery. Then, the user applies a network-sensitive server selection technique to find the best 
service. Such approaches require each application to implement its own selection technique, 
which may not be practical. Moreover, the overhead of service discovery and network-sensitive 
selection may be high, since each user tries to solve the NSSS problem independently.  
 
The Libra project developed a simple alternative, namely network-sensitive service discovery 
(NSSD) [32]. By combining network-sensitive server selection with the service discovery 
process, NSSD allows users who are looking for services to specify both the desired functional 
and network properties at the same time. Users and providers can exploit the benefits of network-
awareness without implementing their own selection techniques, and NSSD can solve the NSSS 
problem more efficiently by amortizing overheads over many users.  

4.4.1 NSSD API  
Before we can define our API for NSSD, we need to determine what functionalities NSSD 
should provide, and what should be left to users. The server selection problem can be formulated 
as an optimization problem: finding a solution (e.g., a game server) that optimizes a certain 
metric (e.g., the maximum latency) for a set of targets (e.g., the players). A solution may be a 
single server (as in the game example) or a set of servers (ESM example). Moreover, in some 
scenarios, solving a global optimization problem (e.g., find a streaming server and a transcoder 
such that the total bandwidth usage is minimized) is better than combining the solutions of local 
optimization problems (e.g., find the streaming server closest to the user and then find the 
transcoder closest to the selected streaming server).  
 
Since it is not feasible to support all optimizations imaginable, our goal in defining the API is the 
following: users should be able to easily specify simple and common optimizations using the 
API, and the API should provide enough flexibility so that it is possible for users to perform their 
own service-specific and possibly complex optimizations if necessary. The goals led to the 
following design decisions:  
 
 

• Local optimization only: Our API only allows users to specify local optimization 
problems, i.e., a user can only query for one service at a time. The reason for this decision 
is that service-specific global optimizations may be arbitrarily complex. Therefore, it may 
be very difficult to specify such problems. Also, solving global optimization problems in 
NSSD may be infeasible due to computational complexity.  
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User X  

 
 

Figure 7: Handling an NSSD query 
 

• Provide a set of standard metrics: Our API allows a user to specify constraints and 
preferences on a set of standard metrics: maximum and average latency, minimum and 
average bandwidth, and server load. However, we do not allow, for example, user-
defined utility functions, since they can make the API too complex.  

 
• Best-n-solutions: The first two decisions define a set of standard network-sensitive 

selection techniques provided by NSSD. While we believe this set is sufficient for many 
users and services, it cannot cover all possible needs. Since we want to let users perform 
their own more complicated optimizations, we make our API flexible by allowing a user 
to ask for the best solutions. Therefore, for example, a user can ask for all streaming 
servers (and the closest transcoder to each of them) to compute the globally optimal 
solution if absolute optimality is required. Furthermore, this allows users to control the 
trade-off between optimality and complexity (for example, for another user it may be 
good enough to find the best solution among the closest three streaming servers).  

 
The detailed API is presented elsewhere [32]. An evaluation based on Planetlab measurement 
and simulation shows that API allows providers to implement service-specific optimization 
efficiently. The reason is that the main challenge (dealing with large numbers of resources) is 
handled by NSSD.  

4.4.2 Query processing  
Given the NSSD API described above, NSSD queries can be resolved in many different ways. In 
this section, we first describe a simple approach that heavily leverages earlier work in service 
discovery and network measurement; this is also the design used in our prototype. We mention 
alternative approaches in the next section.  
 
As shown in Figure 7, a simple NSSD query processor (QP) can be built on top of a service 
discovery infrastructure (e.g., the Service Location Protocol [26]) and a network measurement 
infrastructure that can estimate the network properties (e.g., latency) between nodes. One 
possibility is to integrate the functionality of QP into the service discovery infrastructure, i.e., it 
is a module that extends the functionality of a traditional service directory.  
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Let us describe how NSSD queries are handled. When the QP module receives an NSSD query 
(step 1 in Figure 7), it forwards the functional part of the query to the service directory (step 2). 
The directory returns a list of candidates that match the functional properties specified in the 
query (step 3). Then the QP module retrieves the necessary network information (e.g., the 
latency between each of the candidate and user X) from the network measurement infrastructure 
(step 4). Finally, the QP module computes the best solution as described below and returns it to 
the user (step 5).  
 
One benefit of integrating service discovery and server selection in a single service is that 
caching can be used to improve performance and scalability. When NSSD gets requests from 
many users, the cost of collecting network status information or server load information can be 
amortized. Furthermore, network nodes that are close to each other should have similar network 
properties. Therefore, nodes can be aggregated to reduce the amount of information required (for 
example, use the same latency for all users in an address prefix). This should improve the 
effectiveness of caching.  

4.4.3 Alternative approaches  
Now let us look at some alternative approaches that can potentially be used to handle NSSD 
queries. [21] Describes how a hash-based overlay network mechanism (such as Chord [52]) can 
be used to discover content described as a set of attribute-value pairs (see also Section 4.7). Such 
a system can form the basis of a service discovery infrastructure by describing each service as a 
set of attributes that describe its functionality and network properties. Network awareness is 
introduced in the query resolution phase of the system so that the returned matches satisfy certain 
network properties specified in the query.  
 
Another alternative is application-layer any casting [56], in which each service is represented by 
any cast domain name (ADN). A user submits an ADN along with a server selection filter 
(which specifies the selection criteria) to any cast resolver, which resolves the ADN list of IP 
addresses and selects one (or more) from the list using the filter. Potentially, the ADN and 
resolvers can be extended to allow users to specify the desired service attributes, and the filter 
can be generalized to support more general metrics.  
 
Finally, distributed routing algorithms are highly scalable, and they can, for example, be used to 
find a path that satisfies certain network properties and also includes a server with certain 
available computational resources [31]. A generalization of this approach can be combined with 
a service discovery mechanism to handle NSSD queries.  

4.5 ESM  
Traditional network architectures distinguish between two types of entities: end systems (hosts) 
and the network (switches and routers). One of the most important architectural decisions is then 
the division of functionality between end systems and networks. In the Internet architecture, the 
internetworking layer, or IP, implements a minimal communication unicast and multicast 
service, while end systems implement all other important functionality such as error, congestion, 
and flow control. While this minimalist approach to communication services is probably the 
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single most important technical reason for the Internet’s growth, it places severe constraints on 
the richness of the service. The Libra project explored an alternative approach to multicast.  

4.5.1 Architecture  
In his seminal work in 1989 [18], Deering argues that multicast should be implemented at the IP 
layer. This view has been widely accepted and most routers today implement IP Multicast. 
However, IP Multicast has several drawbacks that have so far prevented the service from being 
widely deployed. First, IP Multicast requires routers to maintain per group state, which not only 
violates the “stateless” architectural principle of the original design, but also introduces high 
complexity and serious scaling constraints at the IP layer. Second, the current IP Multicast model 
allows for an arbitrary source to send data to an arbitrary group. This makes the network 
vulnerable to flooding attacks by malicious sources, and complicates network management and 
provisioning. Third, IP Multicast requires every group to dynamically obtain a globally unique 
address from the multicast address space and it is difficult to ensure this in a scalable, distributed 
and consistent fashion. Finally, IP Multicast is a best effort service. Providing higher level 
features such as reliability, congestion control, flow control, and security has been shown to be 
more difficult than in the unicast case.  
 
All these drawbacks are a direct result of the fact that key features of the multicast protocol are 
fixed, yet even these simple fixed features stress the capabilities of traditional routers. In light of 
these issues, the Libra Project studied a fundamentally different approach to implement multicast 
functionality. In particular, we consider a model in which multicast related features, such as 
group membership, multicast routing and packet duplication, are implemented at end systems, 
assuming only unicast IP service. We call the scheme End System Multicast (ESM). End-
systems can be either desk-top machines or programmable network nodes that support multicast 
as a high-level service. Here, end systems participating in the multicast group communicate via 
an overlay structure that is based on unicast paths. The overlay is self-organizing, i.e. it selects in 
a distributed fashion what set of resources (communication links and ESM nodes) will best 
satisfy the clients.  
 
We believe that End System Multicast can address most problems associated with IP Multicast. 
Since all packets are transmitted as unicast packets, network provisioning is not affected and de-
ployment may be accelerated. End System Multicast maintains the stateless nature of the 
network by requiring end systems, which subscribe only to a small number of groups, to perform 
additional complex processing for any given group. In addition, we believe that solutions for 
supporting higher layer features such as error, flow, and congestion control can be significantly 
simplified by leveraging the capabilities of the ESM end systems. Finally, an end system based 
architecture no longer requires global consistency in naming of groups and allows for application 
specific naming. The last two features directly exploit the programmability of the ESM nodes, 
which allows application specific solutions to be implemented.  
 
To understand the fundamental technical challenges in the ESM architecture and devise effective 
solutions for these problems, we have conducted several studies. First, we have designed basic 
overlay network construction techniques for ESM and demonstrated the basic viability of the 
ESM approach. Second, we have demonstrated the suitability of ESM for multimedia 
conferencing applications in the dynamic and heterogeneous commercial Internet. Third, we 
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have designed light-weight measurement-based algorithms for optimizing ESM’s performance. 
Finally, we have implemented and deployed an Inter live broadcasting toolkit based on the End 
System Multicast architecture. The system is seamlessly integrated with commercial audio and 
video software (e.g. Apple Quicktime Broadcaster and Player). The system was part of the Libra 
demo presented at the 2002 DARPA Active Networks Conference and Exposition meeting and it 
has also been used to live broadcast numerous CMU distinguished lectures and university events, 
and the ACM SIGCOMM 2002 and 2003 conferences. Overall, the system has already been used 
by over 2000 clients.  
 
In the following, we summarize the contributions of the ESM research.  

4.5.2 The Case for End System Multicast  
A key challenge in the ESM approach to multicast is the distributed resource management 
problem. The topology of the overlay must be chosen so it uses resource efficiently (e.g. we 
should minimize duplicate packets on physical links) while also optimizing user performance 
(e.g. minimize end-to-end delay). We have studied these questions in the context of a protocol 
that we have developed called Narada. Narada constructs an overlay structure among 
participating end systems in a self-organizing and fully distributed manner. Narada is robust to 
the failure of end systems and to dynamic changes in group membership. End systems begin with 
no knowledge of the underlying physical topology, and they determine latencies to other end 
systems by probing them in a controlled fashion. Narada continually refines the overlay structure 
as more probe information is available. Narada may be distinguished from many other self-
organizing protocols in that it does not require a native multicast medium.  
 
We evaluate the performance penalty of the overlay Narada produces using simulations. In a 
group of 128 members, the delay between at least 90% of pairs of members increases by a factor 
of at most 4 compared to the unicast delay between them. Further, no physical link carries more 
than 9 identical copies of a given packet. We have also implemented Narada and conducted 
preliminary Internet experiments. For a group of 13 members, the delay between at least 90% of 
pairs of members increases by a factor of at most 1.5 compared to the unicast delay between 
them. These results show that the performance penalty of implementing multicast functionality 
in end systems is not very high and thus ESM is a very viable approach.  

4.5.3 Light-Weight Measurement-Based Optimization  
One of the challenges associated with distributed resource management dynamic adaptivity to 
changing conditions. Narada uses a measurement-based communication-peer selection strategy 
to improve the performance of bandwidth-demanding overlay systems. Traditionally, such peer 
selection is based on basic light-weight measurement-based techniques such as RTT probing, 
10KB TCP probing, and bottleneck bandwidth probing may work in practice in the peer-to-peer 
environment. By conducting trace-based analyses on over 10,000 end hosts in the Internet, we 
find that the basic techniques can help achieve 40 to 50% optimal performance. To deepen our 
understanding, we analyze some of the intrinsic properties of these techniques. Our analyses 
reveal the inherent difficulty of the peer selection problem due to the extreme heterogeneity in 
the peer-to-peer environment, and that the basic techniques are limited because their primary 
strength lies in eliminating the low-performance peers rather than reliably identifying the best-
performing one.  
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However, our analyses also reveal two key insights that can potentially be exploited by 
applications. First, for adaptive applications that can continuously change communication peers, 
the basic techniques are highly effective in guiding the adaptation process. In our experiments, 
typically an 80% optimal peer can be found by trying less than 5 candidates. Secondly, we find 
that the basic techniques are highly complementary and can potentially be combined to better 
identify a high-performance peer, thus even applications that cannot adapt may benefit. Using 
media file sharing and End System Multicast streaming as case studies, we have systematically 
experimented with several simple combined peer selection techniques. Our results show that for 
the non-adaptive media file sharing application, a simple combined technique can boost 
performance to 60% optimal. In contrast, for the continuously adaptive End System Multicast 
application, we find that a basic technique with even low-fidelity network information is 
sufficient to ensure good performance. We believe our findings will help guide the future designs 
of high-performance peer-to-peer systems.  

4.5.4 Using End System Multicast in the Internet  
While our preliminary simulation results conducted in static environments show that ESM is 
very promising, we have yet to consider the challenging performance requirements of real world 
applications in a dynamic and heterogeneous Internet environment. To address this concern, we 
have explored how Internet environments and application requirements can influence End 
System Multicast design. We explore these issues in the context of audio and video 
conferencing: an important class of applications with stringent real-time performance 
requirements. We have conducted an extensive evaluation study of schemes for constructing 
overlay networks on a wide-area test-bed of about twenty hosts distributed around the Internet.  
 
Our results demonstrate that in order to meet the performance requirements of audio and video 
conferencing, it is necessary for self-organizing protocols to adapt to both latency and bandwidth 
metrics. We have devised techniques by which such protocols can adapt to dynamic metrics like 
available bandwidth and latency, and yet remain resilient to network noise and inaccuracies 
inherent in the measurement of these quantities. We demonstrate our ideas by incorporating them 
into the Narada self-organization protocol.  
 
We have evaluated our techniques by testing the redesigned Narada protocol on a wide-area test-
bed. Our test-bed comprises twenty machines that are distributed around North America, Asia 
and Europe. Our results demonstrate that our techniques can provide good performance, both 
from the application perspective and from the network perspective. With our scheme, the end-to-
end bandwidth and latency attained by each receiver along the overlay is comparable to the 
bandwidth and latency of the unicast path from the source to that receiver. Further, when our 
techniques are incorporated into Narada, applications can see improvements of over 30–40% in 
both throughput, and latency. Finally, the costs of our approach can be restricted to 10–15% for 
groups of up to twenty members. Our results indicate that End System Multicast is a promising 
architecture for enabling performance-demanding conferencing applications in a dynamic and 
heterogeneous Internet environment.  
 



 17

4.6 Measurement Infrastructure  
Managing and deploying services requires information about the performance properties of the 
network. Moreover, services typically assume universal connectivity, which does not exist in 
practice because of the wide spread use of NATs. The Libra project developed two network 
measurement tools, one estimating latency (GNP) and one estimating available bandwidth 
(PTR), and the AVES tool for providing connectivity across address spaces.  

4.6.1 Global Network Positioning  
Achieving high performance is a key challenge in building large-scale globally-distributed 
network services and applications such as distributed content hosting services, overlay network 
multicast, content addressable overlay networks, and peer-to-peer file distribution. We believe a 
promising approach to achieve high performance is to use network distance (i.e., round-trip 
propagation and transmission delay, a relatively stable characteristic) between hosts as a first-
order metric to optimize application performance. Global Network Positioning (GNP) is a 
solution designed to predict network distance accurately with little network measurements [42]. 
The key idea is to transform the complex structure of the Internet into a simple geometric space 
(e.g. an N-dimensional Euclidean space) representation based on a small amount of network 
measurements to several Landmark hosts in the Internet. In this representation, each host in the 
Internet is characterized by its position in the geometric space with a set of geometric 
coordinates. If the representation is accurate, then the easily computable geometric distances 
between hosts in this geometric space can accurately approximate the Internet network distances, 
and no actual network measurements are required.  
 
In extensive Internet experiments, we have found that by using a 7-dimensional Euclidean space, 
in 90 among a globally distributed set of hosts with less than 50 which is the best among all 
known solutions. Key distinguishing properties of GNP are (1) peer-to-peer architecture friendly, 
(2) highest prediction accuracy among known algorithms, (3) extremely fast, (4) highly scalable, 
(5) geometric representation directly applicable in many applications.  
 
The GNP measurement infrastructure has been used by a number of systems, including ESM and 
NSSD.  

4.6.2 Packet Train Rate Probing  
Many applications are more sensitive to bandwidth than latency, so it is important to have 
bandwidth estimates when placing services in the network. Until recently, the tools for 
estimating bandwidth were very crude. Typically, applications use a TCP session of about 5-15 
seconds to get an estimate on the available bandwidth between two nodes. This is clearly an 
expensive solution.  
 
We developed a more light-weight solution, called the Packet Train Rate (PTR) method [29]. It 
is based on the observation that when we send a packet train of back to back packets over an 
Internet path to a destination, then competing traffic on bottleneck router will separate the 
packets, so the inter-packet gaps measured at the destination will be larger than at the source. 
However, when we send a packet train with large inter-packet gaps, the packets will travel 
through the network independently, and the inter-packet gap does not change (on average). The 
smallest inter-packet gap for which a packet train can travel along a path without having its inter-
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packet gap increased by competing traffic is called the turning point and it has the property that 
consumes all the unused bandwidth on the bottleneck link.  
 
The PTR method uses a sequence of packet trains with different inter-packet gaps to 
experimentally identify the turning point. It then uses the rate of the train at the turning point as 
an estimate of the available bandwidth. PTR turns out to be quite effective. A set of Internet 
experiments shows that on most network paths, PTR can get a good estimate of the available 
bandwidth in about 6 roundtrip times using 16-packet trains [29]. This is significantly faster than 
other tools such as Pathload [34].  
 
PTR is a very promising probing technique that can be used in many applications. For example, 
we used PTR to improve the Slow Start mechanism that TCP uses to probe for available 
bandwidth. The resulting algorithm, called Paced Start, is faster and has much lower packet loss 
than Slow Start [30].  

4.6.3 Address Virtualization Enabling Service (AVES) for Incrementally 
Scaling the Internet Address Space  
We have conducted research in providing connectivity across Internet networks of heterogeneous 
address spaces. The rapid growth of the Internet has made IPv4 addresses a scarce resource. 
Today we witness two major trends to get around this problem. The first is to upgrade and 
deploy networks using IPv6; the second is to deploy networks using reusable-IPv4 addresses. As 
a result, the Internet is rapidly evolving into a collection of networks of heterogeneous address 
spaces. Such development jeopardizes the universal connectivity property of the Internet.  
 
To solve this problem, we propose a distributed waypoint service called AVES [41]. The key 
idea is to use IPv4 waypoints (3rd-party network agents) as relays to connect any IPv4 host to an 
arbitrary set of IPv6 or reusable-IPv4 hosts. As a result, the internetworking heterogeneity is 
handled by the waypoints and hidden from the existing IPv4 infrastructure, making non-intrusive 
deployment of AVES possible. Once AVES is deployed, the service is instantaneously accessible 
transparently by any IPv4 host in the Internet via host name resolution. This approach is unique 
because it solves the connectivity problem without changing the networking layer of existing 
systems. We are currently deploying an AVES prototype at CMU to service the community 
members who have, for example, created home networks with reusable-IPv4 addresses and need 
universal connectivity for their home computers.  

4.7 Publish-subscribe communication services  
Publish-subscribe (pubsub) systems are an alternative to traditional communication in which 
unicast or multicast addresses are used to deliver messages. There are two important aspects to a 
generic publish-subscribe system: Data Naming (how publications are described), and 
Subscription Language (how subscribers describe their interests). A key design goal for publish-
subscribe systems is to support names and subscriptions that are flexible enough to support a 
wide variety of applications. However, there are often fundamental tradeoffs that may make such 
flexibility impractical.  
 
There have been two important types of publish-subscribe systems: subject/channel-based and 
content-based. In a channel-based system, every publication gets implicitly associated with a 
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channel and a subscription explicitly names the channel the receiver is interested in. A closely-
related variant of such systems is when publications and subscriptions are forced to contain 
specific, a priori chosen subjects. There have been a number of highly-scalable implementations 
of such systems including systems using IP Multicast [19] and more recent systems using 
distributed hash tables (DHTs) [46, 9]. Unfortunately, while these approaches are scalable, the 
relatively restrictive naming and subscription language limit the number of applications that such 
systems can support.  
 
Content-based publish-subscribe systems support subscriptions that specify any predicate over 
the entire content of the message. Such content-based pubsub systems provide an application 
flexibility in framing its queries depending on its needs. However, previously known approaches 
to implementing these systems suffer scalability problems. Existing systems use one of two 
designs: 1) Subscriptions and publications are sent to and matched at a centralized server [48], 
and 2) Subscriptions or publications are flooded to all participants in the network [11, 5]. Each of 
these implementation styles suffer from a number of obvious scaling flaws.  
 
Based on previous system designs, it appears that there is a fundamental trade-off between the 
richness of the subscription language and the scalability of the system. The Libra project 
developed two pubsub systems that explore intermediate points in the richness-scalability 
spectrum. Both systems use names that are a list attribute-value pairs and they support rich 
queries, e.g. subset matching and range searches. The first system, Mercury, uses a content-based 
approach while the second system, Camel, is based on DHTs.  

4.7.1 Mercury  
Mercury’s basic approach is to create a routing hub for each attribute used in subscription 
queries. Subscriptions are passed to exactly one of the hubs corresponding to the attributes that 
are queried, while publications are routed to all hubs for which the publication has an associated 
attribute. Given this structure, the publish-subscribe data delivery can be accomplished by: 1) 
routing subscriptions and publications to rendezvous points within each hub, 2) matching 
subscription and publications at these rendezvous points, and 3) delivering the publication from 
the rendezvous to interested subscribers. The key challenges in this design are routing 
subscriptions and publications to rendezvous points quickly and efficiently, and distributing load 
uniformly throughout the network.  
 
Within each routing hub, nodes are organized in a circular fashion much like the Chord DHT 
[52]. However, there are some key differences from Chord. First, each node in the hub is 
responsible for a contiguous range of attribute values -unlike Chord, no cryptographic hashes are 
used to map the data values to keys. This allows for a simple mapping of the range predicates in 
subscriptions to a collection of contiguous nodes in a hub. Second, since cryptographic hashes 
are not used, the distribution of values used in the routing is no longer uniform. This forces the 
Mercury system to: 1) have mechanisms other than finger pointers for providing efficient 
routing, and 2) have mechanisms for balancing load among the participating nodes. The key to 
Mercury’s design is a novel sampling technique that allows each node to estimate the current 
distribution of data values.  
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Each node having an approximation of the data distribution enables a number of interesting 
techniques within Mercury. First, Mercury uses the data distribution to construct appropriately 
spaced routing pointers to ensure logarithmic bounds on the number of routing hops. Second, the 
approximate information allows Mercury to estimate the selectivity of subscriptions among the 
different hubs. This allows subscriptions to be routed to the most selective hub, minimizing the 
number of nodes to which the subscription is routed. Our results show that this reduces the 
average number of nodes involved in a subscription (for our test workloads) by 25-30 random 
hub selection. Finally, the distribution estimate allows Mercury to identify portions of a hub that 
are receiving excessive load. Mercury achieves load-balancing by biasing the addition of new 
nodes towards these regions of the hub and by having lightly loaded nodes periodically leave and 
rejoin the system. Our results show that Mercury can quickly (within 100 rounds of leaving and 
rejoining) load-balance nodes despite a heavily skewed workload.  
 
Applications can utilize this publish-subscribe infrastructure using a simple API exported by the 
Mercury substrate. As a demonstrative application, we have implemented a simple 2-
dimensional distributed-interactive simulation-like (DIS) multiplayer game using Mercury. The 
design of the Mercury system was presented at the Netgames 2002 workshop [3].  
 
Mercury is a useful service that can be implemented on an active networking infrastructure. 
Active routers in key locations could act as Mercury forwarding agents.  

4.7.2 Camel  
The Camel Content Discovery System (CDS) [22, 21] uses names that consist of a list of 
arbitrary attribute-value pairs. Camel is built on top of a distributed hash table, such as Chord 
[52] or Tapestry [8]. When registering a name, Camel will hash each attribute-value pair 
individually and register the name with the nodes corresponding to each hash value. This means 
that a name with N AV-pairs will be registered in N nodes. Queries can be forwarded to the DHT 
node corresponding to any of the AV-pairs in the query and that node will then do a local lookup 
on its database. Camel uses a query optimization whereby its sends the query to the node that has 
the lowest load, i.e. the node corresponding the least popular AV-pair.  
 
By using Rendezvous Points (RP), network-wide message flooding is avoided at both 
registration and query times. However, in practice, some AV-pairs may be much more common 
or popular in MFDs than in others. It has for example been observed that the popularity of 
keywords in Gnutella follows a Zipf-like distribution [35]. Such a distribution will cause a few 
peers being overloaded by registrations and queries, while the majority of the peers in the system 
stay underutilized. To improve the system’s throughput under skewed load, the CDS deploys a 
distributed dynamic load balancing mechanism, where multiple peers are used as RP points to 
share the heavy load incurred by popular AV-pairs. When an AV-pair appears in many 
registrations, instead of sending all the registrations to one peer, the system partitions them 
among multiple peers. Similarly, when there are many queries for the same AV-pair, the system 
allows the original peer who is responsible for this pair to replicate its database to other peers. 
The partitions and replicas corresponding to one AV-pair are organized in a logical matrix called 
the Load Balancing Matrix (LBM). This matrix automatically expands and shrinks based on the 
pairs query and registration load. Note that because of the query optimization mentioned above, 
an LBM should never have both a large number of partitions and replicas.  
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This load balancing mechanism allows the system to maintain very high throughput, even under 
very skewed distributions [21, 22]. An evaluation of the system in the context of a content-based 
music retrieval system confirmed these results [24, 54].  
 
Active networking plays a key role in Camel. While it is built on top of a generic DHT, the 
processing performed on the Rendezvous Points is specific to Camel. This code should be 
downloaded dynamically, as is needed.  

4.8 Service Customization  
In this section we take a closer look at the different types of Execution Environments (EEs) that 
have been developed. We then introduce customizable service EEs as a new class of EEs.  

4.8.1 Classes of EEs  
While there is general EE architecture that defines what support is needed to host an Active 
Application (AA), there are several ways of deploying an EE in a network. For the purpose of 
our discussion, we will distinguish between two classes of EEs.  
 
The first class of EEs is characterized by the fact that its primary purpose is to process the 
packets that flow through AAs hosted by the EE. Examples include ANTs and the 
PLAN/Switchlets. Per-packet processing ranges from relative simple local operations such as 
compression or error correction (e.g. [38]) all the way to complex AAs that in effect implement 
virtual routers or bridges [2]. One property of such EEs is that the AAs that they host have 
minimal interaction with the rest of the router infrastructure. Their primary interaction with the 
rest of the router is the exchange of packets, although they may occasionally also collect status 
information or negotiate with the Node OS for resources. We will call such EEs overlay EEs 
since they typically add network functionality that is quite separate from that of the hosting 
network infrastructure.  
 
The second class of EEs is characterized by the fact that the AAs they host modify the behavior 
of the router indirectly. For example, they may update routing tables or change the parameters of 
packet schedulers. Any packets handled directly by such AAs are typically control packets that 
may trigger actions by the AA. Examples of such EEs include the Darwin QoS delegates runtime 
environment [23, 53] and ASP [7]. A key design parameter for such EEs is the API they offer to 
their AAs [44, 53]. It determines what actions the AAs can take. We will call such EEs control 
EEs since their AAs typically control router functionality.  
 
Figure 8 illustrates the difference between overlay and control EEs. The thick arrows represent 
the primary dataflow while the thin dashed arrows indicate control operations. APIs are 
represented by horizontal dashed lines.  
 
Not surprisingly, control EEs will typically be implemented in the control plane of the router. 
Overlay EEs, on the other hand, are logically part of the data plane, although how they are 
executed depends on how expensive the AA processing is and on the architecture of the router. 
On high-end active routers, overlay EEs could execute on dedicated processing resources on the 
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router port cards, e.g. plugins [17], while on low end platforms, slow path data processing may 
share resources with the control plane.  
 

 
(a)        (b)  

Figure 8: Classes of Execution Environments (EE): (a) overlay EE and (b) control EE 
 

4.8.2 Customization  
While building a set of service components for the Libra project, we observed that many 
components share the following property. While most of the service functionality is generic and 
is required by all users, some service features can be supported in many different ways. Users 
want to choose how these features are supported, since it has a big impact on the end-to-end 
service properties. Let us look at some examples:  
 

• QoS: Many services can benefit from QoS support, for example so they can deliver more 
predictable services to end-users. However, the details of how, for example, reserved 
bandwidth should be managed will be different.  

 
• Transcoding: Many users need to be able to translate video format or reduce video 

resolution. However, the precise formats needed or the required video resolution will 
differ and may change over time.  

 
• Multicast: Basic multicast support, e.g. delivering a packet to many receivers, is useful 

for many applications. However, properties such as required reliability of data delivery 
and practical methods for doing congestion control will be different.  

 
While it is of course possible to implement the service component as a series of AAs, each 
implementing a slightly different version of the service, this is inefficient since EEs may have to 
run many copies of very similar code. A more elegant solution is to break the service into two 
parts: a base service that implements shared functionality, and a customization code module that 
allows users to “fine tune” the service. The customization module is often very simple, since it 
only has to extend or modify the existing base functionality. This is a natural solution and this 
approach is commonly used on end-nodes. For example, many end-user applications such as text 
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editors or spreadsheets provide ways of extending or customizing the capabilities of the 
application through programs or macros.  
 
The overall structure of a customizable service component is very similar to the EE/AA 
architecture. The base service combined with a small runtime environment can be viewed as an 
EE and the customization code is the AA. There are also some significant differences. First, in a 
customizable service component, most of the functionality is provided by the service EE. In  
  
 

  
(a)              (b)  

 
Figure 9: Active Service Customization for (a) overlay EEs and (b) control EEs 

 
contrast, most traditional EEs primarily provide support for AA execution, e.g. language support, 
downloading and possibly caching of AA code modules, and installing of AAs. Another 
difference is that the function performed by the customization code is very focused and 
SPECIFIC to the service being customized. This second difference provides the motivation for 
including the base service functionality as part of the EE. Viewing just the runtime environment 
as the EE makes little sense since it has no useful function without the presence of the base 
functionality of the service. Note that customization applies to both overlay and control EEs, as 
is illustrated in Figure 9.  
 
A customizable EE has two APIs (dashed lines in Figure 9). First, it has the API that it 
implements for its AAs. As we discussed above, we expect the API to be fairly narrow and 
highly service specific, and we provide some examples later in the paper. The second API 
DEFINES how the EE interacts with the rest of the router. This API will typically correspond to 
the Node OS API and it is much more flexible and powerful than the first API. This difference in 
APIs suggests that installing a new customization AA will typically be a very lightweight 
operation, while installing a new customizable service is more heavy weight. This is not unlike 
the difference between installing an AA and an EE in, for example, the ABone. Installing a new 
EE requires special privileges, while any user can install an AA.  
 
While we have introduced the use of customization EEs as a pragmatic solution to the problem 
of supporting services that differ only in certain features, this approach turns out to have another 
significant advantage. The API that the customization EE offers to its AAs is typically very 
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focused and simple. This simplifies the security challenges that come with the flexibility of 
active networking. Specifically, checking the correctness of AA calls is typically simple and very 
lightweight. We will illustrate this point when discussing examples later in this paper.  
 
Using our definition of customization EEs, a number of other active networking projects have 
developed EEs that are very similar to our customization design. An example is the Concast 
effort [10]: the base service is incast (the reverse of multicast), while the specific way of merging 
messages from the leaves to the root can be customized.  
 
A number of examples of service customization are discussed in detail in [51, 53, 49, 20, 36, 13, 
37].  

4.9 Congestion control  
The objective of our congestion control work was to develop a suite of algorithms that would 
allow a collection of hosts to collaboratively implement QoS-like bandwidth allocation in the 
network. Our plan was to use/adapt the Congestion Manager system to implement congestion 
control algorithms at the endpoints. Such a design requires endpoints to behave in a cooperative 
fashion. This cooperation can be created either by securing end-points and ensuring that they run 
the appropriate code (e.g. through secure network adapters or trusted computing techniques or by 
creating the appropriate incentives to ensure that the end-points behave correctly). Based on 
these goals, our work explored three topic areas: 1) enhancing the Congestion Manager to make 
it a practical system for our use, 2) determining the correct end-point congestion control 
algorithms to use, and 3) developing an understanding of how network designs (and incentives) 
affect end-point congestion control decisions.  
 
Congestion Manager. The Congestion Manager [4] is one of several recent proposals that have 
been made for sharing congestion information across concurrent flows between end-systems. In 
these proposals, the granularity for sharing has ranged from all flows to a common host, to all 
hosts on a shared LAN. A significant problem with all past designs is that two or more flows 
sharing congestion state may in fact not share the same bottleneck. We have categorized the 
origins of this false sharing into two distinct cases: 1) networks with QoS enhancements such as 
differentiated services, where a flow classifier segregates flows into different queues, and 2) 
networks with path diversity where different flows to the same destination address are routed 
differently.  
 
Our results have shown that persistent overload can be avoided with window-based congestion 
control even for extreme situations of false sharing, but higher bandwidth flows run at a slower 
rate. We found that delay and reordering statistics can be used to develop robust detectors of 
false sharing and are superior to those based on loss patterns. We also found that it is markedly 
easier to detect and react to false sharing than it is to start by isolating flows and merge their 
congestion state afterwards. The combination of these observations led to the development of 
effective fixes for the Congestion Manager system. These results will appear at ICNP 2003 [50].  
 
End-point Algorithms. From the early days of modern congestion control, ushered in by the 
development of TCP’s and DECbit’s congestion control algorithm and by the pioneering 
theoretical analysis of Chiu and Jain [14], there has been widespread agreement that linear 
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Additive-Increase Multiplicative-Decrease (AIMD) control algorithms should be used. However, 
the early congestion control design decisions were made in a context of fairly primitive loss 
recovery (e.g., TCP Reno) and router queuing behavior (e.g., FIFO drop-tail). In subsequent 
years, there has been substantial improvement in TCP’s loss recovery schemes (e.g., SACK) and 
router queuing mechanisms (e.g., RED, ECN). These mechanisms are significantly better at 
tolerating bursty behavior.  
 
Our work explored the following fundamental questions: Is AIMD the sole choice for congestion 
control even in these modern settings? If not, can other scheme(s) provide better performance?  
 
We evaluated the four linear congestion control styles -AIMD, AIAD, MIMD, MIAD -in the 
context of these various loss recovery and router algorithms. Our results showed that while 
AIMD is an unambiguous choice for the traditional setting of Reno-style loss recovery and FIFO 
drop-tail routers, it fails to provide the best goodput performance in the more modern settings. 
Where AIMD fails, we found that AIAD proves to be a reasonable choice.  
 
End-point incentives. For years, the conventional wisdom has been that the continued stability of 
the Internet depends on the widespread deployment of “socially responsible” congestion control. 
However, the perception has been that network end-points have little or no incentive to really 
perform socially and that left to their own desires, end-points would be overly aggressive.  
 
In our work, we explored how the issues such as loss recovery and router behavior affects each 
flow’s attempts to maximize the throughput it achieves by modifying its congestion control 
behavior. Using a combination of analysis and simulation, we have explored the Nash 
Equilibrium of this game.  
 
We found that in more traditional environments -where end-points use TCP Reno-style loss 
recovery and routers use drop-tail queues -the Nash Equilibriums are reasonably efficient. 
However, when endpoints use more recent variations of TCP (e.g., SACK) and routers employ 
either RED or drop-tail queues, we found that the Nash Equilibriums are very inefficient. This 
suggests that the Internet of the past could remain stable in the face of greedy end-user behavior, 
but the Internet of today is vulnerable to such behavior. Second, we found that restoring the 
efficiency of the Nash Equilibriums in these settings does not require heavy-weight packet 
scheduling techniques (e.g., Fair Queuing) but instead can be done with a very simple stateless 
mechanism based on CHOKe [43]. These results were presented at Sigcomm 2002 [1].  
 
This style of congestion control extends the concept of active networking to the network 
interfaces of end-hosts. The deployment of our techniques would require both the control and 
programming of these network interfaces by a bandwidth allocation system.  

5 Discussion and Conclusions  
The starting point for the Libra project was the tension between providing Internet services that 
are both scalable and offer rich functionality to end-users. Our thesis was that a component-
based approach to service creation and deployment combined with the use of active networking 
can support rich, scalable services. The main challenges in making this approach work were in 
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the areas of resource management and service specialization. We believe our results in these 
areas demonstrate the practicality and value of our approach.  
 
The class of services we studied in Libra, primarily interactive services with strict response time 
requirements, typically use two types of components. A fairly generic communication 
component (e.g. multicast, publish-subscribe) that provides communication services to a set of 
high functionality components that provide primarily computational and storage services. The 
different nature of these components suggests that they can and should be managed differently. 
For low-level communication-oriented components, scalability is the biggest challenge and a 
distributed resource management solution using self-organization is attractive. In contrast, for 
user-level services that offer rich functionality, addressing precise user requirements is more 
important, so the use of service synthesizers that have application knowledge is more attractive. 
Both the self-organizing components and service synthesizers can share a common runtime 
infrastructure that provides, for example, measurement and connectivity support.  
 
Active networking technology has played a key role in making a component-based work. Active 
networking is used in two crucial ways. First, we need the ability to deploy service components 
in the network as needed. New service instances may for example need to be deployed to satisfy 
increased load. More importantly, new instances of service components often need to be placed 
“close” to the user to meet end-to-end latency or bandwidth requirements. Second, we use active 
networking technology to customize generic service components so they better support the needs 
of higher level services or end-users. The idea is that base service functions as an execution 
environment that can host active applications that implement user or domain-specific 
functionality, e.g. prioritization of traffic or matching operations in publish-subscribe systems. 
Customization is especially important for generic low-level services.  
 
While the Libra approach to service deployment looks very promising, a number of open 
problems remain. A first question is to what degree service synthesizers can be generic. While 
we have been able to show that it is possible to develop new services using a declarative service 
definitions that are interpreted by a generic synthesizer, the performance tradeoffs associated 
with this approach are not well understood. A second question is how we control the deployment 
of active applications. Clearly, the number of customization or active extensions that a network 
node supports should not grow linearly with the number of network users. Clearly, some 
discipline is needed. The answer is probably that we should develop active applications that 
support applications or application domains, but we have limited experience with this. Finally, it 
is an open question how the presence of many entities that do active adaptive resource 
management will affect network behavior and performance. In general, this is likely not to be a 
problem (today’s network user are already adaptive). However, it is possible that the behavior of 
a small number of large services, e.g. large organizing overlay networks, could result in 
oscillations and poor performance for other users. More research is needed in this area.  
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